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Abstract-Laminar free convection in the vicinity of an isothermal vertical finite plate is studied in the 
Grashof-number range between zero and unity and two Prandtl numbers of 0.72 and 10.0, by means 
of a perturbation analysis. Solutions to the governing differential equations are expressed in pertur- 
bation series with the Grashof number itself taken as the perturbation parameter. Three terms in all 
series expansions have been calculated numerically by using the relaxation technique for both 
Prandtl numbers. Results of all p~~urbation functions, as well as of isothermal and stream lines for 
various Grashof numbers and the two Prandtl numbers are shown graphically and discussed. Finally, 
these results are used to discuss the leading-edge effects relative to the well-known boundary-layer 

solutions. 
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g~~3(~~ - Ta)/v2, Grashof number; 
zavitational acceleration; 
coefficient of heat transfer; 
fluid thermal conductivity; 
height of vertical plate; 
= hL/k, Nusselt number; 
limiting Nusselt number at G = 0; 
= ($5 - jk)L2/pV2; 
static pressure; 
temperature; 
= CL/v; 
velocity component in the Z-direction; 
= CL/v; 
velocity component in the @lirection; 
= B/L; 
coordinate along the plate measured 
from the mid-point, positive in the 
direction against gravity; 
location of matching along the plate; 
= j,lL; 
coordinate normal to the plate measured 
from the plate. 

Greek symbols 

ir 
fluid thermal diffus~vity ; 
fluid coefficient of volumetric expansion; 

8, square grid size; 
0, = (T - rp%J/(Tzu - Tm>; 
V, fluid kinematic viscosity; 
P7 fluid density; 
Q, fluid Prandtl number; 
S4 dimensionless stream function; 
V2, Laplacian operator in Cartesian co- 

ordinate system. 

Subscripts 
W, wall monitions; 
*, conditions in the environment. 

Superscripts 
(01, (0, (9,. - . , orders of perturbations. 

~RODUC~ON 

FREE-CONVECTION studies have received much 
attention in the recent heat-transfer literature. 
For laminar free convection in the vicinity of 
heated surfaces, the majority of analytical 
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investigations, by far, deal with boundary-layer 
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phenomena. ~a~emati~lly, these boundary- 
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the kinematic viscosity approaches zero, or the 
Grashof number tends to infinity. In practice, 
these solutions do give satisfactory physical 
results when the Grashof number becomes 
sufficiently high. It is perhaps evident that such 
external free-convection phenomena cannot be 
considered as completely understood without the 
corresponding physical knowledge in the rest of 
the Grashof-number range, namely, the range 
of moderate and small Grashof numbers. Even 
though many experimental correlations on the 
overall rates of heat transfer for different 
geometries are known in the literature, they, 
however, fail to give any insight to the inter- 
action between the momentum and energy fields, 
and as to how this interaction is affected by 
changing Grashofand Prandtlnumbers. Much less 
is known analytically. In the range of moderately 
high Grashof numbers, Yang and Jerger [l] 
recently obtained a perturbation solution for 
laminar free-convection boundary layers along a 
finite and isothermal vertical plate, from which 
detailed first-order deviations from the classical 
Pohlhausen solution have been evaluated. Their 
results in local velocity profiles compare better 
with the experimental data of Schmidt and 
Beckmann [2] than that of the pure boundary- 
layer solution. However, their predicted correc- 
tion on the overall rate of heat transfer at the 
plate surface, though very small, bears a 
different sign as that according to the existing 
experimental correlations. In the range of low 
Grashof numbers, no detailed results for any 
geometry are known in the literature. Farzet- 
dinov [3] suggested a perturbation solution in 
this range and proved a uniqueness theorem for 
this solution. Zeroth-order approximation in 
this perturbation solution is taken to be that of 
steady conduction. Earlier, Mahony [4], in 
dealing with heat transfer at low Grashof 
numbers from thin wires and spheres, utilized 
independently the same perturbation series, and 
obtained some qualitative results by directly 
matching the steady-conduction solution to 
asymptotic similarity solutions for wake flows 
valid at large distances from the heat source. 
The flow field was not considered. Also, it may 
be pertinent here to mention the study by 
Reeves and Kippenhan [5] who showed the 
existence of a similarity solution to the complete 

set of governing partial differential equations for 
laminar free convection along a vertical plate 
where the surface temperature varies linearly 
with the distance away from the leading edge, 
and is valid for all Grashof and Prandtl numbers. 
This solution is identical to that obtainable from 
the boundary-layer equations [6], and does not, 
however, correspond to any realistic physical 
condition when the Grashof number goes to 
zero, and hence is only of academic interest. In 
view of the above, it is perhaps quite evident that 
much remains to be done in this area of research. 

The primary purpose of this study is to 
attempt to provide some detailed information 
concerning the steady momentum and energy 
fields in the range of extremely small Grashof 
numbers. In view of the great complexity of 
the governing differential equations, a simple 
geometry of a vertical finite plate with a uniform 
surface temperature has been chosen for this 
study. The present approach is also based on 
perturbation series expansions as independently 
suggested by Mahony [4] and Farzetdinov [3], 
utilizing the Grashof number itself as the 
perturbation parameter. All perturbation func- 
tions in the zeroth-, first- and second-order 
approximations, which are governed by elliptic 
equations, are calculated in detail for two 
Prandtl numbers of 0.72 and 10.0, by means of 
standard relaxation technique. The results are 
shown to be valid in the Grashof-number range 
between zero and unity. 

Before the mathematical formulation of the 
present problem is described, it is of particular 
interest to mention an additional incentive to 
studying this problem. It arises from the results of 
the boundary-layer perturbation solution given 
by Yang and Jerger [l]. As already noted 
previously, they have shown that their first- 
order perturbations in the momentum field do 
account for the deviations in local velocity 
profiles from the classic boundary-layer solution, 
as compared to the experimental data. However, 
their predicted Nusselt numbers, contrary to the 
experimental data, fall below that according to 
the classical solution. It has been suggested [l] 
that this slight discrepancy could result from the 
inadequacy of the boundary-layer perturbation 
solution to take into account the relatively 
strong convection effect in the immediate 
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vicinity of the leading edge as a result of leading- 
edge conduction. Since the leading-edge pheno- 
menon is essentially a low Grashof-number 
phenomenon, the validity of the above con- 
jecture can only be determined after the low 
Grashof-number solution to the problem is 
available. Such a determination has also been 
attempted in the present study and result will be 
shown later in the paper. 

FORMULATION AND THE PRESENT 
APPROACH 

For steady laminar free convection in the 
vicinity of a two-dimensional finite vertical plate 
maintained at a uniform temperature different 
from that in the environment, the governing 
Navier-Stokes equations of motion, continuity 
equation and energy equation may be respectively 
written as 

_ ad _ afi 1 ap 
U~z+v~J= --pay - + vm (2) 

(3) 

aT aT 
tizz+ti-_=aV2T 

ay 
(4) 

where 2 is the coordinate along the plate, 
measured from the mid-point on the plate and 
positive in the direction against the gravity, and 
jj is the normal coordinate measured from the 
plate. The unknowns are the velocity components 
C and 8, the static pressurep, and the temperature 
T. It is noted that the plate leading edge is 
located at 2 = - L/2 and jj = 0. Other symbols 
are defined in the Nomenclature. In these equa- 
tions, the usual conditions of constant property 
values except slight change in density, negligible 
static-pressure gradient in the environment and 
negligible viscous dissipation have also been 
utilized. The associated boundary conditions are 
as follows : 

n+&cc ii=8+0 p-f&c 

T+T’, any f 

L 
jj=O i>ZandZ<-g 

~=fi=~=~~_-O 
aJ aY aY p(5) 

-+<; C=fi=O 

T = T, (constant) 

y++cc C=b-+O p-+p, 

T+Tm any2 

where L is the total height of the plate. Note that 
it is only necessary to consider the half plane 
y > 0 in view of symmetry. In order to bring 
out the characteristic dimensionless quantities 
in the problems, it is desirable to re-cast the 
above equations in dimensionless forms. By 
introducing the following definitions : 

iiL - u=_ .=“L XT; y=’ 
V V L 

T- Tco 
’ = Tw _ Tm p = 

(p - &o)L2 
Pv2 

G = g/XTw - TdL3 

V2 

Equations (l), (2), (3) and (4) reduce to 

u~+v$=-$+fe+v2U (6) 

au au ap uax+v-=--+v% 
9 ay (7) 

au au 
z&+ay=o 

ae ae 1 
Uax+ v-=,v2e ay 

(8) 

respectively, and the boundary conditions (5) in 
turn become 

x-tfco u=v-+O p-t0 e-+0 anyy 

y=O x>& andx<--4 1 
au v~_2!~o ap 
3 = ay ay I (10) 
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-Q<x:<+ u=v=o 

i 

(10) 
u=zl+O p-t0 B-t0 anyx 

It is evident that the only parameters in this 
problem are the Grashof number G and the 
Prandtl number U. 

In the present study, a perturbation solution to 
equations (6) to (10) is sought in the following 
forms : 

(j = ,9(O) + G&l) + G2@, + . . . . 
u = Gu(l) i (&4(% + .,.. 1 
11 = Gv(l) -t G%(2) + . . 

i 

(11) 

p = Gp(l) + G”P(~) + . . . 

where all perturbation functions are dependent 
of the space variables and the Prandtl number. 
For sufficiently small Grashof numbers, these 
expansions are expected to converge satis- 
factorily [3]. When equations (11) are substi- 
tuted into equations (6-9) and terms with like 
powers of G are collected, the following equa- 
tions governing the perturbation functions are 
obtained : 

The zeroth-order approximation : 

p49(0) = () 

The first-order approximations : 

(12) 

~“u(l) - iipcl, = - oco, 

ax- 
(13) 

v2r.(l) _ !E!?) = 0 

3Y 
(14) 

(15) 

r%(O) atI 
__ u(1) + ~ 
3X aY 

u(l) z t V2~(1’ 
u 

(16) 

The second-order approximations: 

(17) 

~2~(2) _ ?!!! = u(1) ‘2 + &) ‘! (18) 

&i(2) i%(2) 

as+?=0 (19) 

A few observations can be made at this time. 
The limiting temperature distribution as Grashof 
number approaches zero, which is that of pure 
conduction, is independent of the Prandtl 
number. Consequently, as the Grashof or Ray- 
leigh number tends to zero, the Nusselt numbers 
based on the average coefficient of heat transfer 
and height of the plate for different Prandtl 
numbers converge to the same limiting value. 
This characteristic agrees well with existing 
experimental data. Also, the Prandtl number 
does not influence the momentum field, as 
represented by u(l), v(l) and p(l). when the 
Grashof number is exceedingly small. such that 
G2-terms are negligible. 

Before the corresponding boundary conditions 
are listed, it is convenient in the present approach 
to cast some of the perturbation equations in 
somewhat different forms. For the first-order 
perturbations, the continuity equation (15) can 
be replaced by another equation obtained by 
differentiating equation (13) with respect to s 
and equation (14) with respect to ~3. and then 
adding the resulting equations with the help of 
(15). This equation may now be written as 

Similarly, equation (19) may be eliminated, and 
in its place we have 

Here it is noted that all perturbation equations, 
equation (12) for the zeroth-order approxima- 
tion, equations (14), (21), (13) and (16) for the 
first-order approximations, equations (18), (22), 
(17) and (20) for the second-order approxima- 
tions, and so on, are linear and of the elliptic 
type, and consequently they may be solved by 
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the same approach. Specific boundary con- 
ditions may be readily derived from equations 
(lo), and are listed as follows: 

The zeroth-order approximation : 

y=o 
am 

.v>$andx<--4 ---0 
aY 

-Q<X<$ en = 1 

Y-+= eo -+ 0 any x 

x -+ f co e(o) -+ 0 any Y 

The first-order approximations : 

au(l) 
Y=O x>f andx<--4 u(i)=-- 

S 
i?p(l) M(l) 

=-=- 
ay ay 

=o 

Y-+a, u(l) = u(l) =: pm =Lz &U--f 0 my x 

x--f *a ~(1) = ~(1) = p(l) =1 @U --f 0 any y 

The second-order approximations : 

y = 0 x ;> & a& x < - -& $21 = !!I!?! 
aY 

8p@) am 
=I------- 

aY =F= 
0 

Y-tco $3 -LI $3 = ~(‘3 ;1 @@t + 0 any x 

x --f f ~0 ~12) -_ ~(2) = $2) = O(2) --f 0 any y 

On the plate, the conditions 

a0 au@) 
-=-= 

aY aY 
0 

are obtained from the continuity equation and 
are necessary in view of the increased order of 
pressure derivatives. For the same reason, 
equations (14) and (21) are coupled, and so are 
equations (18) and (22). Solutions to these 
perturbation equations for a given Prandtl 
number proceed in the following order: Equation 
(12) is first solved, followed by simultaneous 

solutions to equations (14) and (21) for ~(1) and 
p(l). Then u(i) is obtained from equation (13). To 
complete the first-order approximations, equa- 
tion (16) is then solved for A(i). Solutions to the 
second-order perturbation equations and so on 
follow the same order as that in the first-order 
approximations. 

In view of the complexity of these equations, 
any simplification is desirable. Since Q(O) repre- 
sents the forcing function in all subsequent 
perturbations, and is symmetrical with respect to 
the y-axis, this property of symmetry is carried 
into all the other functions. Once these properties 
of symmetry are known, it is then only necessary 
to carry out the solutions to the perturbation 
equations in the quarter plane, instead of in 
the half plane as noted previously. These 
symmetry properties can be analyzed easily by 
considering the signs of the inhomogeneous parts 
for x > 0 and x < 0. For instance, consider 
equation (21) for p(l). The inhomogeneous part 
~a~(O)~ax) is s~et~cal relative to the y-axis in 
magnitude, but changes sign going from x > 0 
to x < 0. Consequently, $1) is expected to be 
also symmetrical with respect to x = 0 in 
magnitude, but has different signs in the two 
regions. On this basis, it may be readily shown 
that all perturbation functions are symmetrical 
relative to the y-axis in magnitude, and the 
corresponding sign relations are those given in 
Table 1, where the boxed quantities in the region 
x < 0 are those which bear different signs as the 
corresponding quantities in the region x > 0. 

Table I. Symmetry properties of pe~turbuti5~ fune~j~~s 

I 
_.._~ 

I p31 P (11 
x>o 

"(11 p(2) fp 

*Cl) fyi' *12) 012) 

I 

It is perhaps evident that in the quarter-plane 
solutions of the perturbation equations, the 
boundary conditions along x = 0 are such that 
either the particular perturbation function under 
consideration is zero in the case when it has 
different signs in the two regions x > 0 and 
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x -=z 0, or its first derivative with respect to x is 
zero, when it has same signs in both regions. 

In the present study, all perturbation equations 
up to and including those in the second-order 
approximations have been calculated numeri- 
cally on a UNIVAC-l 107 digital computer by 
means of the standard relaxation technique [7]. 
Some details of the calculations are described in 
the next section. 

In the numerical ~lculations~ a square-grid 
system in the quarter plane x > 0 and y 2 0, 
with a grid size of 8, has been used in the re- 
laxation solution. The difference equations, 
which can be easily derived and are not presented 
here for simplicity, are known to involve errors 
of the order of 84. In order to be consistent with 
this degree of accuracy, all derivatives appearing 
in the inhomogeneous parts of the perturbation 
equations are evaluated by five-point differentia- 
tion formulae (S], which also involve errors of 
the order of 64. A grid size of O-125, such that the 
entire plate is divided into eight intervals, has 
been chosen. In view that a change in S to 
8 = 0.0625 hardly changes the solution for the 
zeroth-order approximation, this smaller grid 
size was used in the zeroth-order approximation, 
and the grid size of 6 = O-125 is used throughout 
the rest of the calculations. 

The locations of infinity in both space-co- 
ordinate directions are determined by extending 
the grid system out in these directions until the 
calculated perturbation functions approach their 
respective values at infinity asymptotically. For 
both Prandtl numbers of 0.72 and lO*O, it has 
been found that locations of infinity may be 
represented by x = i7.5 and y - 7-0, noting 
that the plate height is represented by unity. 
Consequently, it is seen that approximately 
3200 grid points in the quarter plane are treated 
in the calculation of each perturbation function. 

The allowable residue in any set of relaxation 
calculation may be found by satisfying the 
conditions that its value becomes only a small 
fraction of the maximum value of the unknown 
quantity under consideration, and that a sig 
nit&ant change in the value of the residue does 
not produce a correspondingly signi~cant change 
in the unknown. However, actual values used 

for the rn~~ allowable residues, for practical 
reasons, depend primarily on whether further 
reduction in residue would require excessive 
machine time on the computer. For both 
Prandtl numbers, the achieved ratio of the maxi- 
mum residue to the maximum value of the 
quantity under calculation is 0.12 per cent for 
0(e), O-20 per cent for p(t), 0, ~(1) and B(i), 
2.0 per cent for the perturbation functions in the 
second-order approximations. Higher-order resi- 
due values or inaccuracy can be tolerated in the 
second-order appro~mations for two reasons. 
One is that, as noted previously, no higher~rder 
approbations are attempted, and consequently 
the accuracy in the second-order quantities does 
not become critical. Secondly, the first-order 
perturbation functions are considerably larger 
than the corresponding second-order quantities, 
and hence in the small Grashof-number range 
considered in this study the second-order 
approximations do not contribute greatly to- 
ward the magnitudes of the physical variables 
at a specific Grashof number. 

F~thermore, it may be of interest to mention 
that in all relaxation calculations no di~culty 
has been encountered relative to the convergence 
of calculations when the residues are successively 
reduced. However, one exception is in the 
simultaneous relaxation calculations for $2) and 
v@), where divergence has been observed when- 
ever one allowable residue proportionately 
becomes significantly different from the other. 
This difficulty, however, was easily corrected 
when both residues were allowed to reduce 
successively in same, but small percentages. 

RESULTS AND DISCUSSIONS 

The zeroth-order heat conduction solution for 
the quarter plane x > 0 and y > 0 is shown in 
Fig. 1 in terms of isothermal lines. The leading 
and trailing edges of the vertical plate are 
singularities where temperatures are discon- 
tinuous. However, in the numerical solutions 
they are considered to be integral parts of the 
plate, and consequently the discontinuities are 
smoothed out. It is noted that this solution is 
valid, insofar as the numerical calculations are 
concerned, for plates of any thickness, as long 
as the thickness is less than the grid size 6. 
Since W) represents the limiting temperature 
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FIG. 1. Limiting temperature field 8’0’. 

field as the Grashof number tends to zero, the 
corresponding rate of heat transfer at the surface 
gives the limiting Nusselt number NO as described 
by 

l/2 

+$ j [-$&x (23) 

-112 

where h and k are the average coellicient of heat 
transfer and fluid thermal conductivity, re- 
spectively. According to the presently calculated 
W, NO is given by a value of l-4413. It is of 
particular interest to compare this value with 
several existing experimental correlations. Jakob 
[9] has suggested a ~o~esponding smiting value 
of O-4 based on correlations involving a good 
variety of geometries. However, there is an 
indication that the value for vertical plates is 
somewhat higher. In fact, according to the 
correlation of McAdams [lo] dealing specifically 
with short vertical plates, the Nusselt n~ber at 
a Rayleigh number of unity is given by 1~45. 
Since the present results indicate, as will be 
shown later, that the Nusselt number does not 
vary much in the region 0 < G < 1 .O, especially 
for the lower Prandtl number of O-72, the limiting 
value of 14413 obtained here could be considered 
in good agreement with McAdam’s correlation. 
Also, for comparison purpose, a more recent 
correlation by Buznik and Bezlonstsev [1 I] 

suggests a limiting value of 1.0 for a horizontal 
plate. 

The first-order perturbation functions p(r), 
v(r), u(r) and B(l) are respectively shown in Figs. 2, 
3, 4 and 5 for several values of x in the quarter 
plane x < 0 and y 3 0. The corresponding 
behaviors for x > 0 can be readily deduced 
from symmetry as indicated in Table 1. The 
perturbation functions p(r), u(i) and ~(1) are 
spe~ifi~lly independent of Prandtl number, and 
physically describe the initial momentum field 
when the Grashof number deviates slightly from 
zero. In such an instance, the Grashof number 
is but a scale factor in influencing the momentum 
field. Based on these results, several observations 
concerning the physical phenomenon can be 
made. In the neighborhood of the leading edge 
of the plate, static pressures faI1 below that at 
infinity. The decrease in the negative x-direction 
reach a minimum at about one plate length 
below the leading edge, and then increase 
asymptotically to the environment pressure as 
x + - co. Along the plate, the pressure gradient 
remains positive. These behaviors may be com- 
pared to that of the boundary layers where the 
pressure gradient is zero throughout the flow 
field. Also in the neighborhood of the leading 
edge, the velocity component u(r) is always 
positive, while ~(1) remains negative. This indi- 
cates the fact that the fluid particles are drawn in 
toward the plate due to heating from the plate, 
As soon as these same particles get into the 
region x > 0, they tend to move away from the 
plate, since in this region ~(1) remains positive, 
while v(i) changes sign. The velocity profiies in 
Fig. 4 are of special interest. Along the plate, 
they behave very similarly to the well-known 
boundary-layer profiles. In fact, this similarity 
is even carried into the wake region above the 
plate [12], where the velocity profile changes into 
the familiar bell shape. However, quantitatively 
there is a very important difference between the 
asymptotic wake ffow at distances far from the 
heat source, based on the boundary-layer equa- 
tions and that obtained here, which is based on 
the complete set of governing equations cl), 
(2), (3) and (4). According to the boundary- 
layer solution, as given by [12] and others, the 
centerline velocity increases without bound as 
distance from the heat source increases, while 
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-0.201 
FIG. 2. First-order pressure perturbation $1). 
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FIG. 3. First-order normal-velocity perturbation P(I). 
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FIG. 4. First-order velocity perturbatoin Si. 

according to the present result, the centerline 
velocity goes through a maximum and then 
decreases asymptotically to zero at infinity, a 
condition which must be satisfied in a physically 
realistic case. The difficulty with the boundary- 
layer formulation is that it grossly under-esti- 
mates the effect of the normal velocity component 
in the wake region. This becomes even more 
obvious when the corresponding streams lines, 
which will be shown later, are examined. Also of 
particular interest is the relation between the 
magnitudes of ~(1) and u(l) in the immediate 
neighborhood of the plate for positive X. It is 
seen here that ~(1) is considerably larger than 
0 even in this region of low Grashof numbers. 
A reasonable conjecture is that as the Grashof 
number increases, the normal velocity com- 
ponent v is to decrease monotonically relative 



LAMINAR FREE CONVECTION ALONG A VERTICAL PLATE 823 

--0.16 

v =lO.O 
- -0.24 
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i 
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FIG. 5. First-order temperature perturbation 8”) for 
Prandtl numbers 0.72 and 10.0. 

to u until eventually the ratio L’/U attains the 
order of magnitude of G-114, according to the 
boundary-layer theory. The first-order pertur- 
bation of the temperature field as given by e(l) 
in Fig. 5 for both Prandtl numbers does not 
directly represent a physical phenomenon. How- 
ever, its contribution toward the temperature 
field for Grashof numbers deviating slightly from 
zero is quite significant, and can be physically 
explained without difficulty. In the lower half 
plane, regardless of Prandtl number W is 
negative and its sign is reversed for x > 0 in 
accordance with Table 1. Consequently for a 
Grashof number other than zero in this range 
of extremely small Grashof numbers, the 
temperatures are reduced in the lower-half plane, 
but increased in the upper-half plane, when 
compared to the temperature field for G = 0 
(Fig. 1). This is evidently due to the convection 

effect as a result of u(l) and u(i), which carry ther- 
mal energy from the lower-half plane to the 
upper-half plane. This effect is seen to be more 
pronounced for the higher Prandtl-number fluid. 
Also, it is significant to note that in view of the 
symmetry of f?(l) relative to x = 0, the first-order 
perturbation does not contribute at all toward 
the average rate of heat transfer from the plate, 
or the average Nusselt number. Consequently, in 
order to determine the Nusselt number-Rayleigh 
number relationship for a given Prandtl number 
in the present analysis, the second-order 
perturbation functions must be considered. 

All second-order perturbation functions are 
dependent on the Prandtl number, and have 
been calculated for both Prandtl numbers of 
0.72 and 10.0. They are shown graphically in 
Figs. 6 to 13, inclusive, again for the quarter 
plane x < 0 and y > 0. The complete behaviors 
may again be inferred on the basis of symmetry 
properties indicated in Table 1. These functions 
only have physical meanings when they are 
interpreted according to equations (11). 

000‘ 

P 
(2) 

o-002 

0 

- 0002 

-0004 

-0oo6 

- 0Ooa 

4 

\ 

4 

'0 3 

FIG. 6. Second-order pressure perturbation pc2’ for 
Prandtl number 0.72. 



824 FRANCIS J. SURIANO, KWANG-TZU YANG and JEROME A. DONLON 

I I I I 
-w8o I.0 2*0 30 4.0 

Y 

-4 --Do008 

FIG. 7. Second-order pressure perturbation pt2’ for 
Prandtl number 10.0. 

-00008 

- 00016 

FIG. 9. Second-order normal-velocity perturbation 01 FIG. 10. Second-order velocity perturbation 11~~1 for 
for Prandtl number lU*U. Prandtl number O-72. 

- 00016 

- 00020 

- oO0240 +&--&--i_ 3.0 

Y 

0 

FIG. 8. Second-order normal-velocity perturbation 1)12) 
for Prandtl number 0.72. 
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FIG. 11. Second-order velocity perturbation uf2’ for 
Prandtl number 10.0. 
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FIG. 12. Second-order temperature perturbation W) for 

Prandtl number 0.72. 

Since only the zeroth-, first- and second-order 
approximations are calculated in the present 
study, the present results, strictly speaking, are 
only valid up to a Grashof number for which all 
the perturbation series in equations (11) converge 
satisfactorily. Even though there is an indication 
that the convergence of these series is somewhat 
un~e~in at a Grashof number of unity, this 

Y 

FIG. 13. Second-order temperature perturbation k?(z) for 
Prandtl number 10.0. 

value is nevertheless taken in the present study as 
the highest Grashof number to be considered for 
which the present results are at least quali~tive~y 
correct. In the Grashof-number range from zero 
to unity and for Prandtl numbers of 0.72 and 
10.0, the detailed effects of Grashof number on 
the energy and momentum fields have been 
evaluated and the results are shown in Figs. 14 to 
19. Three essential characteristics are here con- 
sidered, namely, the temperature field as given by 
the temperature variable 6, the momentum field 
by the stream function $, and the overall heat- 
transfer characteristic by the average Nusselt 
number. These characteristics are now discussed 
separately as follows. 

Figures 14 and 15 show the effect of Grashof 
number on the temperature field for Prandtl 
numbers of 0.72 and 10.0, respectively. For the 
lower Prandtl number, the Grashof-number 
effect is very slight. Nevertheless, the effect of 
convection causing the closed isothermal lines 
to become fuller in the upper-half plane, as the 
Grashof number increases, can still be seen. This 
effect, however, becomes much more pronounced 
in the higher Prandtl-number case. The develop- 
ment of the temperature field, as Grashof 
nu.rr&r increases, can be dramatically seen in 
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quite different flow details in the neighborhood 
of the leading edge and of the trailing edge of the 
plate. This, however, is not quite evident in the 
case of u = 0.72, as shown in Fig. 16. Figures 17 
and 18 present the corresponding stream lines 
for u = IO.0 and Grashof numbers of 0.5 and 
1.0 respectively. Here the influence of the Gras- 
hof number becomes quite apparent. As the 
Grashof number increases from a small value, 
the same stream lines in the immediate neighbor- 
hood of the plate leading edge spread more and 
more outward. Since the mass flux between any 
pair of known stream lines stays the same, 
spreading out of these stream lines does imply 
reduced velocities. Presumably, these velocities 
would decrease further with further increase in 
Grashof number. This phenomenon is indeed 
consistent with the boundary-layer behavior at 
high Grashof numbers, since according to the 
Pohlhausen’s boundary-layer solution, velocities 

t 

\ 
FIG. 14. Temperature field for Prandtl number 0.72. 

X 

Fig. 15, where isothermal lines for G ,< 0.1 are 
not shown, since they become almost identical to 
those in Fig. 14. However, it should be noted that 
even at G = 1 .O, the Rayleigh number is already 
10-O at this Prandtl number. 

More interesting, perhaps, is the effect of 
Grashof number on the stream lines. Based on 
the usual definition of a stream line for viscous 
flow, the stream function # may be conveniently 
determined from the following equation : 

+G%#)+ . ..)dy (24) 

It is noted here that the stream line along y = 0 
is arbitrarily given a value of zero. Several 
typical stream-line patterns are shown in Figs. 16, 
17 and 18. Here for Prandtl number of 0.72, by 
far the major contribution is due to first-order 
quantities, which are responsible for the sym 
metrical nature of the stream lines. This is in 
complete analogy to that of Stokes flows in 
forced-flow problems. The second-order approti- 

\ 

0 

G= 0.5 

c --- G= I-0 

- 2.01 
- -0 I.0 2.0 

Y 

3.0 

mations start to distort this symmetry, and give FIG. 15. Temperature field for Prandtl number 10.0. 
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at locations ahead of the plate are taken to be 
zero. More significantly, the present calculations 
show that flow does start ahead of the plate 
leading edge, as commonly conjectured. Further- 
more, even at high Grashof numbers, the flow 
behavior in the immediate vicinity of the leading 
edge is that of low Grashof numbers. This 
leading edge effect, however, is not accounted 
for in the boundary-layer solution, nor in the 
boundary-layer perturbation solution [ 11. The 
Grashof number does not seem to affect the 
flow above the plate in the wake region greatly. 
The significance of the present results relative to 
the wake flow is that they account for the proper 
spreading of the stream lines at large distances 
away from the plate such that the velocity 
component u eventually approaches zero as 
.Y+ co, as in contrast to the boundary-layer 

2 r// =0.00008 G= O-001 

‘+‘=0.08 G=O.I 
I 

FIG. 16. Stream lines for Prandtl number 0.72. 

formulation for the asymptotic wake flow where 
velocity 24 along y = 0, unrealistically, increases 
without bound as x tends to infinity. 

Finally, the average Nusselt number N 
calculated from 

+1/2 +1/2 

s 

aeco) 
ff,=_ ay 

aY S[ 
-l/2 -l/2 

+dg+ . . . 6c 
> 

(25) 

which is a mere generalization of equation (23), 
is plotted in Fig. 19 against the usual Rayleigh 
number or the product of Grashof and Prandtl 
numbers for Prandtl numbers of 0.72 and 10-O. 
Note that (ae(n/ay) does not contribute toward 
N in view of symmetry. Within the Grashof- 
number range from zero to unity, the Nusselt 

X 

G- = 10-O 

6= 0.5 

1 

FIG. 17. Stream lines for Grashof number 0.5 and Prandtl 
number 10.0. 
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FIG. 18. Stream lines for Grashof number 1.0 and 
Prandtl number 10.0. 

number deviates very little from its limiting 
value of 14413 for Prandtl number of 0.72, 
while for the higher Prandtl number this 
deviation starts to become noticeable at G = 0.1. 
This is also consistent with the boundary-layer 
solution at high Grashof numbers where on the 
same Nusselt number-Rayleigh number plot, the 
curve for u = 10.0 also lies above that for 
(T = 0.72 [l]. Also shown in Fig. 19 are several 
values from the correlations of McAdams [lo] for 
short vertical plates, and of King [13] for a 
number of different geometries including the 
vertical plate. The comparison among the 
Nusselt numbers is somewhat difficult to inter- 
pret, since the present calculations are not 
expected to be valid beyond a Grashof number 
of unity and are probably only qualitatively 
correct at G = 1.0, and at the same time the 

experimental correlations become increasingly 
more uncertain as Grashof number tends to 
zero. 

2.0 
I I I 

I -0 

N - u=O.72 
---_ (7 q IO.0 ’ 1 

I.5 - a--- 2 

0 McAdoms 

* King 

QG 

FIG. 19. Nusselt numbers at extremely small Grashof 
numbers. 

LEADING-EDGE CORRECTIONS FOR 
BOUNDARY-LAYER SOLUTIONS 

As mentioned previously, Yang and Jerger [l J 
have obtained first-order perturbations to the 
classical Pohlhausen’s solution, and shown that 
their predicted local velocity profiles agree better 
with the experimental data of Schmidt and 
Beckmann [2]. However, their corrections on the 
average Nusselt numbers, though very small, 
bear a different sign as that suggested by the 
existing experimental data. It has been con- 
jectured [l] that such a discrepancy could be due 
to the inadequacy of both the Pohlhausen’s 
solution and the boundary-layer perturbation 
solution to take into account the leading-edge 
convection effect. In order to verify this con- 
jecture rigorously, the solution to the present 
vertical-plate problem must be known for the 
entire Grashof-number range. However, based 
on the present results for very small Grashof 
numbers, it is now possible to estimate the 
magnitudes of this leading-edge effect toward the 
average Nusselt numbers. The whole vertical 
plate is here divided into two regions, the leading- 
edge region -& < x < xm and the boundary- 
layer region xm < x < $. The leading-edge 
region is characterized by low Grashof-number 
flow, while the boundary-layer region, by 
boundary-layer flow with first-order perturba- 
tions included. For further simplification, the 
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local heat-transfer characteristics for low Gras- 
hof-number flow are taken to be that given by 
W and 8(r) only. The location of matching the 
two regions, xna, is determined by matching the 
local coefficients of heat transfer at a specified 
Grashof number. The local Grashof number 
used to evaluate the local heat-transfer coefficient 
in the leading-edge region is calculated on the 
basis of a local characteristic length (x, + O-5), 
which is the distance between the matching point 
and the plate leading edge. Once xm is thus 
determined, the average Nusselt number for the 
entire plate may then be calculated by integrat- 
ing the local coefficients in both regions. The 
results in terms of Nusselt numbers are shown in 
Table 2, together with corresponding values 
given by the boundary-layer solutions and the 
correlations by McAdams [lo] and King [13]. 
It is seen that the leading-edge effect vanishes 
completely for Grashof numbers greater than 
lo*, and becomes more and more signilicant as 
Grashof number decreases. Also, the correc- 
tions on the boundary-layer values due to the 
leading-edge effect are much more significant 
than that due to boundary-layer perturbations. 
Also of interest is the extent of the leading-edge 
region at different Grashof numbers. It decreases 
when the Grashof number increases, as entirely 

expected. In view of the uncertainty in deter- 
mining the local Grashof number for the leading- 
edge region and the lack of knowledge con- 
cerning the intermediate Grashof-number range 
at the present time, the present estimate of the 
leading-edge effect is by no means conclusive. 
However, it does indicate that the leading-edge 
effect could very well outweigh the small 
negative corrections given by the boundary-layer 
perturbations. 

CONCLUDING REMARKS 

In this paper, a perturbation solution to the 
complete set of governing differential equations 
for laminar free convection along a finite, iso- 
thermal vertical plate in the range of extremely 
low Grashof numbers and arbitrary Prandtl 
numbers is presented. Detailed perturbation 
functions up to and including the second-order 
approximations have been calculated numeri- 
cally by the standard relaxation technique for 
two Prandtl numbers of 0.72 and 10.0. These 
functions are shown graphically. Also shown are 
isothermal lines and stream lines illustrating 
individual effects of Grashof and Prandtl 
numbers on the energy and momentum fields. 

Several more important conclusions may now 
be summarized. The limiting Nusselt number as 

Table 2. Comparison of predicted Nusselt numbers at high Grashof numbers with those from experimental correlations 

_. 

G 104 10s 10s 107 10s 109 
- - 

Boundary-layer 0 = 0.12 4.76 8.46 15.04 26.8 41.6 84.6 
solution only 0 = 10.0 11.03 19.61 34.86 61.9 110.3 - 

Boundary layers 
with first-order 

perturbations [l] 

0 = 0.72 454 8.24 14.82 26.6 41.4 84.4 
(I = 10.0 10.87 19.45 34.70 61,8 110.0 - 

Boundary layers D = 0.72 6.32 8.92 15.32 27.1 47.6 84.6 
with perturbations Xm + 0.5 0.277 0.136 0.0725 0.0410 0.0236 0.0139 
and leading-edge I? = 10.0 12.05 20.16 35.22 62.72 1102 - 

corrections Xm + 0.5 0.136 0.0735 0.0417 090239 00137 - 
~___- -_I_- ---I___- --- 

McAdams [IO] 0 = 0.12 5.60 960 17.0 30.5 54.0 97.0 
IS = 10.0 10.50 18.60 33.1 58.9 105.0 - 

______ 
King [I31 o = 0.72 5.40 9.20 16.0 30.0 57,o 112.0 

0 = 10.0 10.00 17.40 33.1 63.1 126.0 - 
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the Grashof number tends to zero is independent 
of the Prandtl number, and has a numerical 
value of 1.4413. As the Grashof number deviates 
slightly from zero, the momentum field changes 
from a stationary field to one which varies 
linearly with the Grashof number, and is also 
independent of the Prandtl number. In this case, 
the stream lines are completely symmetrical with 
respect to the mid-plane of the plate (X -= 0). As 
the Grashof number further increases, the 
closed isothermal lines become fuller in the 
upper plane and closer to one another in the 
lower plane. Also, the stream lines tend to 
spread out in the neighborhood of the leading 
edge more, while those in the vicinity of 
the trailing edge of the plate are not greatly 
affected. All these Grashof-number effects be- 
come quite pronounced for Prandtl number of 
10.0, as in contrast to the case of Prandtl number 
of 0.72, for which the above effects are only 
slightly realized in the Grashof-number range 
between zero and unity. Finally, it has also been 
shown that even at high Grashof numbers, the 
low Grashof-number phenomenon could still 
play an important enough role as to significantly 
influence boundary-layer heat-transfer character- 
istics, especially in the range of moderately high 
Grashof numbers. 

The present analysis and calculations have 
been carried out for a finite vertical plate. In 
view of the dimensionless quantities utilized, the 
results are valid for any finite plate height L. 
However, when L becomes infinite as in the case 
of a set-in~nite plate, the wake region com- 
pletely vanishes and the present results are only 
expected to describe the physical phenomenon 
in the neighborhood of the leading edge. This is 
somewhat different from the boundary-layer 
formulation at large Grashof numbers, for which 
the Pohlhausen’s solution is valid for both the 
semi-infinite and finite vertical-plate cases, and in 
fact, this formulation is also valid in the near- 
wake region above the finite plate [12]. The 
present results? however, show that in the far- 
wake region the boundary-layer behaviors no 
fonger exist. 

Finally, it is pertinent to note that, even though 
the assumptions utilized in the present analysis 
have been justified in the literature on physical 
grounds, no detailed experimental data relative 

to momentum and energy fields in this range of 
Grashof number are known to permit direct 
comparison with the present results. In view of 
the basic nature of this free-convection phenome- 
non, it is sincerely hoped that such experimental 
information will become available in the 
literature. 
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R&m&-La convection naturelle laminaire au voisinage dune plaque finie verticale et isotherme est 
ttudiQ dam la gamme de nombres de Grashof entre zero et l’unite et deux nombres de Prandtl de 
0,72 et lO,O, au moyen d’une analyse de perturbation. Les solutions des equations differentielles 
regissant le phenomene sont exprim&es en series de perturbation; le nombre de Grashof &ant pris 
comme parametre de perturbation. Trois termes dans tous les developpements en series ont 6te 
calcules numeriquement en employant la technique de relaxation pour les deux nombres de Prandtl. 
Les resultats de toutes les fonctions de perturbations, aussi bien que les lignes de courant et les lignes 
isothermes pour divers nombres de Grashof et les deux nombres de Prandtl sont traces graphiquement 
et discutts. Finalement, ces resultats sont employ& pour discuter les effets de bord d’attaque relatifs 

aux solutions bien connues de la couche limite. 

Znsanunenfassung-Mit Hilfe einer Storungsanalyse wird fur den Bereich der Grashofzahlen zwischen 
Null und Eins und die zwei Prandtlzahlen 0,72 und 10,O die laminare, freie Konvektion in der nlchsten 
Umgebung einer isothermen, senkrechten, endlichen Platte untersucht. Losungen der den Vorgang 
beschreibenden Differentialgleichungen werden in Storreihen, wo die Grashofzahl selbst als Stor- 
parameter genommen wird, ausgedriickt. Drei Glieder werden numerisch in allen Reihenentwicklungen 
unter Verwendung der Relaxationstechnik fiir beide Prandtlzahlen berechnet. Die Ergebnisse aller 
Storfunktionen, sowohl der Isothermen wie such der Stromlinien werden fiir verschiedene Gras- 
hofzahlen und die zwei Prandtlzahlen graphisch dargestellt und diskutiert. Schliesslich werden diese 
Ergebnisse dazu verwendet, die Einflusse der Vorderkante in Beziehung auf die gut bekannten 

Grenzschichtlosungen zu diskutieren. 

Anaoraqnn-Mero~a,rn TCOpEW l303My~eHEii Il3J'YaeTCR CBO6OAHaR KOHBeKIJMH B6jIMBIl 

BepTmiaZIbHOi% IIJIOCKOii IIJEiCTIiHbI AJIFI 9EICeJI rpaCFO$a OT HJ'JIfl J(O eAHHPlL+I I# ABJ'X 'IEzCeZI 

IIpauarTnn. Pemerme IICXOAH~IX ypannenug nmecrn B r3uAe ~RA~B no Manony napaMeTpy, 3a 

KoTopnfi ~~UHHTO ~icno l’pacroaa. arm 06omx nnasemri npnrepnn IIpanArnn Tpn Ynena no 
ucex pa3noHtenmrx paccsrrranbr ~ncmenno c nonombro penancaunonnoro MeToAa. I?pa@nse- 
CKM IIOK3.3aHbI M 06Cyx;AaEOTCH BCe p33YJIbTaTbI,B TOM YHCJE E30TepMbI, JIIlHllIi TOK;L. Hano- 
HeIJ,aTII p33J'JIbTaTbIIWIIO?Ib3yIoTCR AJIH aHWIH3a@&'KTOB Ha IIepeAHeir KpOMKe R CpaBHH- 

BaIOTW C SOl~OlIIO I13BeCTHbIMEI peIIIeHI4HMEl IIOI'paHHYHOI'O CJIOFI. 


